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Collision Operators as Generators of Markov 
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The Markovian description of diffusion in velocity space involves a semi- 
group, which because of detailed balance is conveniently interpreted in a 
weighted L2-space. The collision operator C, defined by the corresponding 
generator, is positive semidefinite in this space. For a jump process and a 
continuous process we obtain the collision operators of the linear Boltz- 
mann and Fokker-Planck equations, respectively. If in the latter case the 
friction tensor has a nonvanishing limit as v --~ 0% the spectrum of C is 
discrete. The Fourier-transformed transport operator Tk = C + ik.v is 
studied as a holomorphic family of sectorial operators. In the stated 
Fokker-Planck example, the spectrum of Tk remains discrete for arbitrary 
k. 

KEY WORDS: Brownian motion; Markov processes; collision and 
transport operators; Fokker-Planck equation. 

1. T R A N S I T I O N  PROBABIL IT IES IN VELOCITY  SPACE 

Brownian  mot ion  of a classical, structureless, indestructible particle in an 

infinitely extended uni form and isotropic fluid in thermal  equi l ibr ium has 
been described in many  ways. If  the posit ion of the particle is ignored, we 

have a stochastic process v(t) in velocity space R a. The process is s tat ionary 
if the initial probabil i ty  dis t r ibut ion is Maxwell ian with the temperature of 
the fluid. 

Often the mot ion  is approximated as a strict Markov  process. <1,2> Al- 
though  the approximat ion  is difficult to justify for anything but  diffusion in 

gases, we accept it here as a model. On the basis of  general properties of the 
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transition probabilities involved, the corresponding semigroups and genera- 
tors will be examined (Sections 2 and 3). Reinterpretation of these operators 
in a Hilbert space will facilitate the investigation of their spectra (Sections 
4 and 5). 

The Markov process is described by transition probabilities PL(v-+ P), 
which determine the evolution of a probability measure of the particle in 
~a, 

t*t(P) = fR 3 /*(day) Pt(v -+ F) (1) 

The following properties of transition probabilities are either implied by 
the adopted model or represent physically reasonable additional assumptions: 

(P1) The Markov assumption entails the semigroup property of Pt, 

f P~(v ----> dav')e~(v ' -+ P) = Pt ~(v ---> P) + 

3 

(P2) Particle conservation means that Pt(v --+ I1~ a) = 1. 
(P3) In view of isotropy of the fluid, P,(v ~ F) is invariant under rota- 

tions of velocity space, which means that Pt(Rv --+ RF) = Pt(v .-+ P) for any 
R in the rotation group. 

(P4) As a consequence of microscopic reversibility and of the liquid 
being in equilibrium, P~ obeys the detailed balance symmetry, (a) 

s  fo(v')P,(v' -~ P) d3v ' = J~ fo(v)P,(v ~ P') d3v 
/ .  

where fo(v) = (2rr) -at2 exP(-�89 We write v 2 for mv2/kT, with m denoting 
the mass of the particle and T the temperature of the fluid. 

(P5) P t (v- ->P)> 0 for all t > 0 ,  v~lt~ a, and sets P c  ~a of non- 
vanishing Lebesgue measure. 

The last assumption is not necessary for the subsequent derivations 
and could be replaced by a weaker "mixing" condition. However, non- 
pathological models consistently yield transition probabilities which are 
positive in the stated sense, so that the simplified assumption appears 
justified. 

It follows from (P2) and (P4) that the measure/*o having Maxwellian 
density fo represents equilibrium, in the sense that it is invariant under 
transformation (1). Hence we have a Markov process with invariant mea- 
sure. (~ As will be shown in Section 2, (P5) makes sure that this is the only 
invariant bounded measure. 
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2. S E M I G R O U P  IN H ILBERT SPACE 

Transformation (1) defines the dual semigroup m associated with the 
Markov process, 

Ht*tz(F) := f~3 I*(dav)Yt(v-+ U) 

He* is an operator acting on the set of  signed, bounded Borel measures. 
Particle conservation (P2) and invariance of  the equilibrium measure /*o 
are expressed by Hettx(R 3) = /,(R 3) and Ht*/zo(P) = /*0(F), respectively. 

The statement that the Maxwellian/*o is (up to a constant factor) the 
only signed, bounded measure invariant against He* is an analogy to theo- 
rems of Perron and Jentzsch. (5-7~ We first show that any invariant signed 
measure t* is a (nonnegative) measure. Assuming the opposite, we consider 
the Jordan decomposition, (8~ /, = / , +  - t*-- It is possible to split velocity 
space into two disjoint sets, ~a = F+ (.J P_,  F+ A F_ = 0, so that 
F+(F_) = 0 and /~_(P+) = 0, but ~+(P+) > 0 and /z_(P_) > 0. Clearly 
at least one of  the two sets, say F+, must have Lebesgue measure greater 
than zero. By the invariance of p. we see that for this set 

t , + ( r + )  = t , ( r + )  = H ? t , ( I ' + )  = H**/.+(P+) - Ht*/,_(I?+) (2) 

On the other hand, 

Ht*/x+(I~+) = ( / * + ( d a v )  Pt(v-+ F+) 
�9 

~< ( / * + ( d a v )  Pt(v-+ R a) = / ,+(~a)  = / , + ( P + )  
3 

Now (P5) implies that Ht*/x_(F+) > 0, so that we have a contradiction to 
Eq. (2). 

Suppose then that /, is a normalized (nonnegative) invariant Borel 
measure different from /*o, so that /,([~a)= /,o(R3)__ l. The difference 
/* - / ~ o  is an invariant signed measure with nontrivial positive and negative 
parts, in contradiction to the preceding observation. The proof is complete. 

We now restrict He* to signed measures having densities of the form 
f0(v)q~(v), where 6 is a continuous bounded function, ~ c Cb(i~a). Then for 
any x e Cb(l~3), we have 

f~a X(v)H**lz(dav) = .;ha f day)day' 

= f,3 f a3 ') 
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where in the last step detailed balance (P4) has been invoked. Recalling that 
the (primary) semigroup Ht belonging to a Markov process is defined by (1,2) 

Htr ~ f~3 r ---> day ') (3) 

we conclude that 

fR 3 X(V)Ht*lz(dav) = fa 3 X(V)fo(v)Htr day (4a) 

i.e., the measure Ht*t~ has densityfo(v)Htr On the other hand, 

R3 X(v)H~*l~(d3v) = fR3 r d3v (4b) 

The symmetry between expressions (4a) and (4b) suggests that we 
consider Ht as a symmetric operator acting in the weighted complex Hilbert 
space L2(R3,fo), where the scalar product is 

(q~, X) = f fo(v)r dSv 
JR 3 

In this space, then, for all r X e C b, 

(Htr X) = (r Htx) (5) 

As a real operator, Ht could as well be studied on the corresponding 
real Hilbert space. For subsequent purposes (Section 5), however, it will be 
convenient to have the extension to the complex L2-space. The properties 
of  H, on L 2 are largely known. (4~ The obvious inequality 

fR3 f fo(v)Pt(v ~ dav')]Htr - r 2 dav >_. O (6) 

reduces to 

liB, ell < I1r (7) 
i.e., Ht is contractive in L 2. As Cb(E a) is dense in L z, Ht extends by continuity 
to a contractive operator on the whole L2-space. Obviously IIHtll = 1, 
because 1 is an eigenvalue corresponding to r = 1. 

Inequality (7) guarantees stability of equilibrium. If Ht~(v) describes a 
small deviation from equilibrium 

f(v,  t) = fo(v)(1 + H t r  lr << 1 
one can see that (7) is equivalent to a modified H-theorem. The latter states 
that the free energy belonging to the probability measure of the particle, 

F(t) = kT  f f [ l n f  + �89 2] d3v 
Ja 3 

cannot increase in time. 
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While stability follows from detailed balance, for deriving the approach 
to equilibrium we call upon the positivity of Pc, (P5). Obviously, equality 
in (6) and therefore in (7) can only hold if H# = 4, = const. 

Since lit is the semigroup associated with a strict Markov process, 
Ht maps Cb(l~ 3) into itself. (1,m For q~ ~ Cb(Ea), we have 

Htq~(v) ~ q~(v) as t --+ 0 for all v e I~ a (8) 

and by (P2), 

sup]Hd,(v)l ~< s upal~(v)[ (9) 

Relations (8) and (9) imply, in view of Lebesgue's dominated-convergence 
theorem, that 

IIH,  - as t - + 0  (10)  

As Cb(~ a) is dense in L 2, and as Ht is contractive, one easily checks that 
(10) holds for all ~ e L 2. Referring to (P1)-(P5), we can summarize: 

(HI) The Ht form a strongly continuous contractive semigroup of 
operators in L2(Ra,fo). 

(H2) If  1 denotes the function ~(v) = 1, we have Htl = I. 
(H3) He commutes with all elements of the rotation group. 
(H4) Since by Eqs. (5) and (7) He is symmetric and bounded, it is 

self-adjoint. 
(H5) ~b(v) = const is the only function invariant against Ht, so that 1 

is a simple eigenvalue of this operator. 

The last statement follows from (6) and the associated remarks, or 
from an ergodic theorem. (4~ 

The generator ( - C )  of the semigroup {H,} is introduced by 

1 
- C~  := lim = ( H #  - q~) 

t~o t 

for all q~ E L 2 such that the limit exists. It is known (m that such an operator 
is closed and densely defined. Because of (H4) it is symmetric. Moreover, as 
{Ht) is contractive, C is accretive (or equivalently, - C is dissipative), 

(C~, 4') > 0 for all ~ r D(C) (11) 

By a known theorem, (lm C is also maximal accretive, so that it coincides 
with its Friedrichs extension. Thus C is self-adjoint. 

For ~ e D(C), Ht~ := ~(v, t) is a solution of the kinetic equation 

(~/~t + C)qb(v, t) = 0 (12) 
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with the initial value q~(v, 0) = 4,(v). In this connect ion C (or - C) is known 
as the collision operator .  

Let  us again summarize :  

(C1) The collision opera tor  is accretive, (C4,, 4,) >1 O, V4, ~ D(C) .  
(C2) C1 = 0, i.e., the equilibrium funct ion 4' = 1 is an eigenfunction 

corresponding to the eigenvalue ~o = 0. 
(C3) C commutes  with the ro ta t ion  group. 
(C4) C = C t. 
(C5) ~0 = 0 is a simple eigenvalue of  C. Consequently,  equality in (11) 

can only hold for  4, = const. 

Simplicity of  the zero eigenvalue follows f rom the identity (H,  - 1)4, = 
- f t  o H~C4, dr. The last expression vanishes if C4, = 0, so that  Ht4, = 4,, 
which by (H5) has the unique solution 4, = const. To  derive the second 
assertion, we use the Cauchy-Schwar tz  inequality for  (C4,, X), with arbi t rary  
X e D ( C )  and 4, such tha t  (C4,, 4,) = 0. The  equat ion C4, = 0 follows. 

3. E X A M P L E S :  B O L T Z M A N N  A N D  F O K K E R - P L A N C K  
E Q U A T I O N S  

M a r k o v  processes describing diffusion in velocity space are usually 
assumed to be either j u m p  processes or to be continuous,  a'2~ In  the first 
case, C equals the difference of  a multiplicative and an integral operator ,  
so that  the Bol tzmann equat ion with finite collision rate is obtained. I f  for  
v - r  v' the transit ion probabi l i ty  is absolutely continuous,  the collision 
opera to r  can be specified as (m'a 

C4,(v) = v(v)4,(v) - fna K(v --> v')4,(v') day ' (13) 

The  consequences of  (C 1)-(C5) for  the scattering kernel K are straightforward,  
e.g., v(v) -= f K(v --~ v') day ' f rom (C2). 

In the other  extreme of  a cont inuous M a r k o v  process the collision 
opera to r  is local. I f  the domain  of  C includes the functions 1, v and the 
tensor  p roduc t  v | v, the restriction o f  C to twice cont inuously differentiable 
functions is a second-order  differential operator .  ~2) We then have a diffusion 
process, described by the F o k k e r - P l a n c k  equation,  ~1,2.12) where 

c 4 , ( v )  = - ( v  - v ) . ; ( v ) ,  v4,(v) (14) 

a It is mainly the linearized Boltzmann operator, pertinent to the single-gas problem, 
that is analyzed in Ref. 11. However, with little modification, the conclusions also 
apply to the linear Boltzmann equation describing the diffusion of a foreign particle. 
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The friction tensor g(v) must be once continuously differentiable. Its com- 
ponents are obtained from products of components of velocity increments 
by averaging over the transition probability, 

~(v) = lira 1 f~ t,o ~ Pt(v--> dav')(v ' - v) | (v' - v) 
3 

= - � 89  lim C ( v '  - v) @ (v' - v) (15)  
v'--*u 

where C acts upon v'. Another relation is 

V. ~(v) - v. {(v) = limt,o 71 f~ Pt(v -+ dSv')(v ' - v) = - Cv (16) 

We notice that g is symmetric and positive semidefinite. 
Properties (C2) and (C4) have already been taken into account by 

specializing the differential operator in (14). Use was made of the fact that 
in our L2-space, the adjoint of V is - (V - v). This also helps to verify (C1), 

(cr r = ( ; . v r  r e ) />  o (17) 

In view of (C5) and Eq. (15), ~(v) is positive definite for all v, so that C is 
a positive-semidefinite operator in the whole of ~3. 

Rotational invariance demands that the friction tensor can only have 
two different eigenvalues, corresponding to directions parallel and perpen- 
dicular to v. The eigenvalues can only depend upon speed v (the magnitude 
of v). Thus ~13"14~ 

;(v) = r + [ ~ ( v ) -  r | v ) / v  ~ (18) 

where 1 is the unit tensor. 
Physical arguments by which the Fokker-Planck equation is derived 

(admittedly in a nonrigorous way) lead to further restrictions for the tensor 
g(v). Most often the equation is justified either by assuming weak coupling 
(interaction potential between the diffusing particle and fluid bounded by 
Um~x << kT), or by taking the Rayleigh gas (very heavy particle in a light gas). 
In neither case can the Fokker-Planck equation hold on a time scale involv- 
ing single collisions, since the corresponding velocity increments do not have 
a Gaussian distribution. Hence the limits in Eqs. (15) and (16) should not 
be understood literally in physical applications. Multiple scattering, however, 
produces approximately Gaussian distributions, and the equation becomes 
approximately valid. Strict validity is, of course, only reached in the appro- 
priate limits. (One must then be careful with the ordering of various limits.) 
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In both models individual encounters only cause infinitesimal changes 
in the velocity of the particle. For not too long times the force acting upon 
the particle and then the velocity increment appearing in Eq. (15) can there- 
fore be expressed as if the trajectory were a straight line. (~2) That force can 
be written as the gradient Vr in position space of a random potential, 

r = - V r U ( r  , r2 ..... rN) 

where r2(t) ..... rN(t) describe the random motion of the fluid molecules. In 
view of the straight-trajectory approximation, r(t) = vt, VrU is proportional 
to a gradient in velocity space. The velocity increment v ' - v  during a 
suitable time interval then appears as a gradient in velocity space of a 
random potential. For a random vector field of this nature the formula of 
Obuhov and Yaglom aa) asserts that 

G(v) = (d/dv)[v~.(v)] (19) 

An explicit derivation in the present context has been given by Corngold. (14) 
In the rather unrealistic weak coupling model the transverse velocity 

change in one collision is proportional to v -1, which leads to [• = O(v -1) 
and ~ll(v)= O(v -3) for v--~oe. (14) The same asymptotic dependence is 
obtained for Coulomb interaction, i.e., for the motion of a heavy ion in a 
plasma.( TM 

If  for the Rayleigh-gas model the linear Boltzmann equation is used 
as the starting point, a constant isotropic friction tensor is obtained, ex- 
pressed by moments of the differential scattering cross section. (However, 
the velocity of the heavy particle must stay small compared to thermal 
velocities of the gas molecules; at higher velocities the Fokker-Planck 
equation is no longer a valid approximation.) 

The quoted models do not exhaust all possible applications of  the 
Fokker-Planck equation, so that there is good reason to consider more 
general friction kernels. An intermediate model arises from considering light 
fluid molecules with small hard cores surrounded by weak long-range fields. 
One must then expect a variable g(v), approaching a nonvanishing limit at 
high (but not too high) velocities. With this in mind, we shall henceforth 
assume that the following conditions hold 

lira ~rl(v) = lira [l(v) > 0, lim 1 d~lt - 0 (20) 
. . . . . . . . .  vr dv 

though somewhat weaker restrictions would suffice for the subsequent 
derivations. The weak coupling model and the Coulomb case violate the 
first of conditions (20), and will therefore be considered as exceptions. 
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4. S P E C T R A  OF C O L L I S I O N  O P E R A T O R S  

Eigenvalue problems associated with kinetic equations naturally arise 
when distributions exponentially approaching equilibrium are sought. If  
~P(v, t) = q~(v)e -~  in Eq. (12), then 

C,} = Zq~ (21) 

Since C is positive semidefinite, its spectrum is confined to the nonnegative 
part of the real axis. We also know that ~0 = 0 is a simple eigenvalue. 

The remaining part of the spectrum may differ from case to case. If the 
scattering operator K represented by the integral in Eq. (13) is compact (as 
is the case for the hard-sphere model), then the Boltzmann collision operator 
has an essential spectrum consisting of the values assumed by the collision 
rate v(v). ~z1.16~ Usually this is the interval [Vmin, O0). There may be further 
eigenvalues within the gap (0, v~in), or even an infinite series of them 
accumulating at the infimum Vr~n of the collision rate. (11,~v~ 

We are going to see that Fokker-Planck collision operators have dis- 
crete spectra if condition (20) is fulfilled. For  the special case with ~ = 1/D 
(where D is the diffusion coefficient) this is well known. After symmetriza- 
tion, the operator differs only by an additive constant from the Schr6dinger 
operator for the isotropic three-dimensional harmonic oscillator. Hence the 
eigenfunctions are the same in both cases and the spectra identical, except 
for the displacement. The spectrum of C consists of equidistant eigenvalues: 
A,~= n/D,n  = 0 ,1 ,2  ..... 

In the same way, the more general operator from Eq. (14) is transformed 
into a Schr6dinger-like form, so that use can be made of established criteria 
for the discreteness of the spectrum. We substitute ~(v) = [exp(�88 
which leads to 

A~b = [exp(-  �88 [exp(�88 = - (V - �89 ~(v). (V + �89 

= [ - V . g ( v ) . V  + V(v)]~b (22) 

V(v) = lv-t;(v).v - { Tr ~(v) - �89 

= (�88 2 - {)~ll(v) - �89 d~Jdv (23) 

Though no use has been made of relation (19), V(v) is determined by ~ll(v) 
alone. 

The operator appearing in Eq. (22) is a modified representation of C, 
operating in the space L2(R 3) without weight. For the spectrum to be discrete 
it suffices that g(v) is positive definite, that V(v) and the components of g(v) 
are locally bounded, while V---~ oo for v---> oo. ~18~ The latter condition is 
seen to hold for any ~(v) satisfying Eqs. (20). 

The exceptional case of weak coupling has been investigated by Mazo 
and R6sibois, (19> who found a continuous spectrum covering the whole 
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interval (0, oo). The Coulomb case is similar. For  both models, approach to 
equilibrium can be arbitrarily slow, which is not true for models obeying 
conditions (20). 

5. S P E C T R A  OF F O U R I E R - T R A N S F O R M E D  
T R A N S P O R T  O P E R A T O R S  

If  also the position of  the diffusing particle is recorded, we have a 
Markov process in the phase space N 8 = N3 • E a. (The position space E,  3 
is distinguished by a subscript from velocity space ~3.) 

The process is of a special kind insofar as the variable r(t) is fully 
determined by v(t) through 

f2 r(t) = r(0) + v(,) &- 

We expect intuitively that the generator of such a process, restricted to 
the appropriate set of differentiable functions, should have the form 
- ( v .  Vr + C), where - C  is the generator of the process in R 3. For  jump 
processes this has been proven by Papanicolau. <2~ Without attempting a 
more general proof, we trust that for a probability measure with density 
f(r,  v, t) = fo(V)~(r, v, t), with sufficiently smooth @, the following kinetic 
equation is valid: 

(9/gt + v.V,  + C)@ = 0 (24) 

The negative of  the generator, (v. V r + C), will be called the transport 
operator. 

A slightly generalized interpretation of Eq. (24) also admits measures 
that are not normalized or may even be unbounded in R 6. The excuse is 
that we may think of a suspension of  many particles. However, the suspen- 
sion must be sufficiently dilute so that the particles do not interact with each 
other. 

We refrain from investigating the spectrum of the transport operator 
and from specifying appropriate functional spaces. Instead, with the idea 
of a Fourier-Laplace transformation in the back of our mind, we proceed 
to look for special solutions of Eq. (24) of the form 

qb(r, v, t) = ~(v) exp(ik.r) e x p ( -  ht) 

This leads to an eigenvalue problem for the Fourier-transformed transport 
operator Tk = C + ik-v, 

(Tk -- ;~)~ = 0 (25) 

If  k is regarded as a fixed parameter, Tk is an operator acting on functions 
of  v only, so that it can be analyzed in the same space L2(Na,f0) as before. 
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Obviously Tk is not self-adjoint and in general not even normal, so that 
conclusions about its spectrum are more difficult to reach. To start with, we 
study Tk on D(Tg) = Co~(Ra), take its closure (again denoted as Tk), and 
note the following properties: 

(T1) Tk is densely defined and accretive, i.e., Re(Tk~, ~)/> O, 
v~ ~ D(Tk). 

(T2) Since the left-hand side of inequality (T1) merely involves C, it is 
again true that equality only holds for ~(v) = const. 

(T3) Simultaneous rotation of R 3 and of the vector k leaves Tk un- 
affected. Hence, rotation of k does not affect the spectrum of Tk. In par- 
ticular, an eigenvalue ;~(k) can only depend upon the magnitude of k. If  
~(v) is the corresponding eigenfunction, 0~(Rv) is the eigenfunction of TRk 
corresponding to the unchanged eigenvalue ~(k). 

A rotation by 180 ~ leads to the complex-conjugate operator Tk*=  
C - ik.v. (One of its extensions equals the adjoint Tk*.) Spectral points 
thereby turn into their complex-conjugate values. Yet by (T3) the spectrum 
remains the same. Hence it is symmetric with respect to the real axis. In 
particular, eigenvalues are either real or they occur in complex-conjugate 
pairs. 

More can be said about the spectrum if Tk is form-sectorial, (21~ which 
means that the values of the corresponding quadratic form are within a 
sector inside some right-hand half-plane. That is, we suppose that real 7 
and 3, 0 < 8 < ~rr, can be found such that 

(Zkff, q~) + 7 = l(Zkq~, if) + ~,[e '~, - -8  ~< ~o ~< ~ (26) 

for any ff ~ D(Tk), 11~112 = 1. By closing the form and taking the associated 
operator we arrive at the Friedrichs extension of Tk. Henceforth the symbol 
Tk will be used to denote this extension. We then compare the forms (Tg~, X) 
and (T_k~, X) = (~, TkX). Since Tk is closed and densely defined, we con- 
clude (21~: 

(T4) Switching of k produces the adjoint operator, Tg* = T-l,. 

The spectrum of Tk is thus confined to the half-plane Re(h) /> 0. Another 
consequence of (T4) and of the symmetry of the spectrum is that the residual 
spectrum ar(Tk) is empty. Indeed, if ~ e ar(Tk), then h* is an eigenvalue of 
Tg* = T_u. However, since eigenvalues are not affected by the switching of 
k, we have a contradiction. 

In order to assure the sectorial property of Fourier-transformed trans- 
port operators, we observe that any operator of the form T = C + iL, 
where C is positive semidefinite and L self-adjoint, is sectorial if the form 
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(L4,, 4,) is relatively bounded with respect to (C4,, 4,). This means (21) that 
D(L) ~ D(C) and that nonnegative constants a and b exist such that 

l(Z4,, 4,)1 ~ al[4,ll = + b(C4,, 4,) (27) 

for all 4, ~ D(C). The proof of the assertion is straightforward, and we even 
obtain values of parameters that fit Eq. (26): tg 3 = b, y = a/b. 

We are left with the task of finding out which particular models meet 
the required conditions. The Boltzmann operator is easy to understand in 
this respect. If, as is often the case, the scattering operator K represented by 
the integral in Eq. (13) is bounded in L 2, we only have to compare both 
multiplicative parts of Tk. The form (k.v4,, 4,) is seen to be relatively bounded 
with respect to (v4,, 4,) if 

lim [v(v)/v] > 0 
1)--* oo 

Hence for bounded K this condition suffices for the Boltzmann Tk to be 
form-sectorial. The condition is also necessary: if lim[v(v)/v] = 0, one can 
see that Tk is not form-sectorial. 

The picture is particularly simple if K is a compact operator. We then 
have an essential spectrum consisting of the values assumed by the multi- 
plicative operator [v(v)+ ik.v]. For typical cases (e.g., the hard-sphere 
model) these values cover an area bounded by a hyperbola-like curve with 
the vertex at ~ = v~ln = v(0). This part of the spectrum remains unaffected 
by the compact perturbation, which, in general, only introduces eigenvalues 
(real ones and complex conjugate pairs) outside that area. (22) 

As for the Fokker-Planck case, we are now going to show that the 
form (k.v4,, 4') is relatively bounded with respect to (C4,, 4,) whenever V(v) 
from Eq. (23) has the property 

lim [V(v)/v] = oo ( 2 8 )  
V--* oo 

For friction tensors meeting condition (20) this property is obviously as- 
sured, while weak and Coulomb interactions again represent exceptions. 

Since, in view of rotational invariance, the direction of k is irrelevant, 
we keep it fixed and only vary the magnitude k of this vector. Thus, effec- 
tively, Tk is a one-parameter family of operators. Choosing k as the polar 
axis, we can write 

T,, = C + ikv  cos a, (Tk4,, 4,) = (C4,, 4,) + ik(v(cos a)4,, 4,) 

Next we notice that, since V(v) is locally bounded, (28) implies that for 
any N > 0, there are constants A = A(N) and B = B(N) such that 
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V(v) > Nv for v > A and I V(v)l < B for v < A. Moreover, for ~ e D(C), 
let r = [exp(-�88162 as in Section 4. A little analysis then yields the estimate 

I(v(cos a)r r < (re, r 

= f~<A vlr d3v + f~> a v[~b[ 2 d% 

1 y~ v(~)lr d3 v < A(r r + ~- .~ 

l fR l f~ I V(v)llCl2d~v 

ifo <~ (A + B/N)(r q~) + ~ 3 [ - V . ~ . V  + v(v)]lCl = d~v 

= (A + B/N)(qS, r + N-I(Cc~, r 

It follows that the form (v(cos va)r r is relatively bounded with respect to 
(Cr r with the relative bound equal to zero. 

An interesting consequence is that Tk has compact resolvent for all k, 
or, equivalently, Tk has purely discrete spectrum. To prove that this is so, 
we again fix the direction of k, and admit complex values of the scalar k in 

t~[r r := (rkr r 

In view of Theorem 1.33 on p. 320 in Kato, (21) we know that tk is closable 
and that D(Tk) is independent of k. The closure is again a sectorial form, so 
that the set {/k} is a holomorphic family of forms of type (a) (p. 395 in 
Kato(21)). Since Tk has been extended in the Friedrichs sense, the set {Tk} 
forms a holomorphic family of operators of type (B). As we already know 
that To = C has compact resolvent, the assertion follows from the theorem 
on p. 396 in Kato. (21) 

For the special case with g = 1/D the spectrum of Tk is known to differ 
from that of C merely by a translation along the real axis (23); the eigenvalues 
are A~ = n/D + k2D. For a more general g the picture may become more 
complicated. 
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